Calculation Policy: Reception

Calculation Overview:

Fluency with number and understanding of place value(the position of the digitinthe numberdetermines its worth) are essential to understanding calculation. Children need a deep understanding of the way calculation works. In school, this is supported by the use of apparatus and mathematical images which are detailed out in the policy below. Children need to be taught how to select the best method according to the numbers. The hierarchy of thinking is:

- Can I do it in my head?
- Can I use some jottings to help me?
- Do I need to use a formal written method?

Oncechildren arefluentina range ofstrategies inmentalcalculation, thentheyarereadyto moveontoaformal written method if the complexity of the calculation so demands it. Formal methods are only to be used when a calculation is too complex to be achieved mentally.

As adults, our school experience may have left us with an overreliance on using repetitious formal written methods. At Tilston, however, we value flexibility and creativity alongside accuracy in calculation to better prepare children for the modern world. We encourage our children to be strategic about their choice of methods and to have a sense of a size of the answer.

Reasons for recording:

- To aid mental calculation by writing down some of the numbers and answers involved. (jottings)
- To help the child explain their mental strategy and solutions
- To provide a record of steps to be followed
- Toaidcalculationwhentheproblemistoodifficulttobedonementally

To develop and refine a set of rules for calculation

Informal Written Recording	Number sentences modelled$5+0=5$ $2+3=t$ $4+1=5$ $1+4=t$ $3+2=5$ $0+5=5$
R Subtraction: Mental calculation	Finds one fewerthan a group of up to five and then up toten objects and thenis able to say one fewer than a given number to 20 . Using quantities and objects they can remove a set of objects and say how many are left. Using objects they can subtract two single-digit numbers and can count back to find the answer. Children verbalise the calculations they are doing. Children start to use the vocabulary of subtraction. Number tracks the objects can be place in to compare difference.
R Subtraction: Informal Written Recording	Thereisnorequirementforchildrentomakewrittenrecording oftheirworkbutchildrencanbeencouragedtomaketheirown jottings, drawings to explain what they are doing / have done. Model ways to record using standard notation when appropriate.
R Multiplication: Mental Calculation	Double and halve numbers up to 10 Put objects into pairs and count up in two's Children start to use the vocabulary of doubling. Childrenverbalise the calculations they are doing. Children understand that two rows of three eggs in the box make six eggs altogether.
R Multiplication: Informal Written Recording	Thereisnorequirementforchildrentomakewritten recording oftheirworkbutchildren canbe encouraged tomake theirownjottings, drawings to explain what theyare doing/have done.
R Division: Mental Calculation	Share out objects between two people and count the objects and say how many each person will get. Children verbalise the calculations they are doing. Children extend their thinking to 'suppose there were three people to share the bricks between instead of two. ..' Children start to explore halving as a sharing model. Real life objects, counters etc.
R Division:	Thereis norequirementforchildrentomakewrittenrecording oftheirwork butchildrencanbe encouraged to make their ownjottings, drawings to explain what theyare doing/havedone. Model ways to record using exploratory mark making when appropriate. Discuss remainders as and when they occur.

Informal

